25 research outputs found

    A more randomly organized grey matter network is associated with deteriorating language and global cognition in individuals with subjective cognitive decline

    Get PDF
    OBJECTIVES: Grey matter network disruptions in Alzheimer's disease (AD) are associated with worse cognitive impairment cross-sectionally. Our aim was to investigate whether indications of a more random network organization are associated with longitudinal decline in specific cognitive functions in individuals with subjective cognitive decline (SCD). EXPERIMENTAL DESIGN: We included 231 individuals with SCD who had annually repeated neuropsychological assessment (3 ± 1 years; n = 646 neuropsychological investigations) available from the Amsterdam Dementia Cohort (54% male, age: 63 ± 9, MMSE: 28 ± 2). Single-subject grey matter networks were extracted from baseline 3D-T1 MRI scans and we computed basic network (size, degree, connectivity density) and higher-order (path length, clustering, betweenness centrality, normalized path length [lambda] and normalized clustering [gamma]) parameters at whole brain and/or regional levels. We tested associations of network parameters with baseline and annual cognition (memory, attention, executive functioning, language composite scores, and global cognition [all domains with MMSE]) using linear mixed models, adjusted for age, sex, education, scanner and total gray matter volume. PRINCIPAL OBSERVATIONS: Lower network size was associated with steeper decline in language (β ± SE = 0.12 ± 0.05, p < 0.05FDR). Higher-order network parameters showed no cross-sectional associations. Lower gamma and lambda values were associated with steeper decline in global cognition (gamma: β ± SE = 0.06 ± 0.02); lambda: β ± SE = 0.06 ± 0.02), language (gamma: β ± SE = 0.11 ± 0.04; lambda: β ± SE = 0.12 ± 0.05; all p < 0.05FDR). Lower path length values in precuneus and fronto-temporo-occipital cortices were associated with a steeper decline in global cognition. CONCLUSIONS: A more randomly organized grey matter network was associated with a steeper decline of cognitive functioning, possibly indicating the start of cognitive impairment

    Application of Machine Learning to Arterial Spin Labeling in Mild Cognitive Impairment and Alzheimer Disease

    Get PDF
    PURPOSE: To investigate whether multivariate pattern recognition analysis of arterial spin labeling (ASL) perfusion maps can be used for classification and single-subject prediction of patients with Alzheimer disease (AD) and mild cognitive impairment (MCI) and subjects with subjective cognitive decline (SCD) after using the W score method to remove confounding effects of sex and age. MATERIALS AND METHODS: Pseudocontinuous 3.0-T ASL images were acquired in 100 patients with probable AD; 60 patients with MCI, of whom 12 remained stable, 12 were converted to a diagnosis of AD, and 36 had no follow-up; 100 subjects with SCD; and 26 healthy control subjects. The AD, MCI, and SCD groups were divided into a sex- and age-matched training set (n = 130) and an independent prediction set (n = 130). Standardized perfusion scores adjusted for age and sex (W scores) were computed per voxel for each participant. Training of a support vector machine classifier was performed with diagnostic status and perfusion maps. Discrimination maps were extracted and used for single-subject classification in the prediction set. Prediction performance was assessed with receiver operating characteristic (ROC) analysis to generate an area under the ROC curve (AUC) and sensitivity and specificity distribution. RESULTS: Single-subject diagnosis in the prediction set by using the discrimination maps yielded excellent performance for AD versus SCD (AUC, 0.96; P .05). CONCLUSION: With automated methods, age- and sex-adjusted ASL perfusion maps can be used to classify and predict diagnosis of AD, conversion of MCI to AD, stable MCI, and SCD with good to excellent accuracy and AUC values

    Combination of plasma amyloid beta(1-42/1-40) and glial fibrillary acidic protein strongly associates with cerebral amyloid pathology

    Get PDF
    BACKGROUND: Blood-based biomarkers for Alzheimer's disease (AD) might facilitate identification of participants for clinical trials targeting amyloid beta (Abeta) accumulation, and aid in AD diagnostics. We examined the potential of plasma markers Abeta(1-42/1-40), glial fibrillary acidic protein (GFAP) and neurofilament light (NfL) to identify cerebral amyloidosis and/or disease severity. METHODS: We included individuals with a positive (n = 176: 63 ± 7 years, 87 (49%) females) or negative (n = 76: 61 ± 9 years, 27 (36%) females) amyloid PET status, with syndrome diagnosis subjective cognitive decline (18 PET+, 25 PET-), mild cognitive impairment (26 PET+, 24 PET-), or AD-dementia (132 PET+). Plasma Abeta(1-42/1-40), GFAP, and NfL were measured by Simoa. We applied two-way ANOVA adjusted for age and sex to investigate the associations of the plasma markers with amyloid PET status and syndrome diagnosis; logistic regression analysis with Wald's backward selection to identify an optimal panel that identifies amyloid PET positivity; age, sex, and education-adjusted linear regression analysis to investigate associations between the plasma markers and neuropsychological test performance; and Spearman's correlation analysis to investigate associations between the plasma markers and medial temporal lobe atrophy (MTA). RESULTS: Abeta(1-42/1-40) and GFAP independently associated with amyloid PET status (p = 0.009 and p  0.33, p < 0.001). Abeta(1-42/1-40) showed a moderate negative correlation with MTA (Spearman's rho = - 0.24, p = 0.001). DISCUSSION AND CONCLUSIONS: Combination of plasma Abeta(1-42/1-40) and GFAP provides a valuable tool for the identification of amyloid PET status. Furthermore, plasma GFAP and NfL associate with various disease severity measures suggesting potential for disease monitoring

    Tau PET and relative cerebral blood flow in Dementia with Lewy bodies: A PET study

    Get PDF
    Purpose: Alpha-synuclein often co-occurs with Alzheimer’s disease (AD) pathology in Dementia with Lewy Bodies (DLB). From a dynamic [18F]flortaucipir PET scan we derived measures of both tau binding and relative cerebral blood flow (rCBF). We tested whether regional tau binding or rCBF differed between DLB patients and AD patients and controls and examined their association with clinical characteristics of DLB. / Methods: Eighteen patients with probable DLB, 65 AD patients and 50 controls underwent a dynamic 130-minute [18F]flortaucipir PET scan. DLB patients with positive biomarkers for AD based on cerebrospinal fluid or amyloid PET were considered as DLB with AD pathology(DLB-AD+). Receptor parametric mapping(cerebellar gray matter reference region) was used to extract regional binding potential (BPND) and R1, reflecting (AD-specific) tau pathology and rCBF, respectively. First, we performed regional comparisons of [18F]flortaucipir BPND and R1 between diagnostic groups. In DLB patients only, we performed regression analyses between regional [18F]flortaucipir BPND, R1 and performance on ten neuropsychological tests. / Results: Regional [18F]flortaucipir BPND in DLB was comparable with tau binding in controls (p>0.05). Subtle higher tau binding was observed in DLB-AD+ compared to DLB-AD- in the medial temporal and parietal lobe (both p<0.05). Occipital and lateral parietal R1 was lower in DLB compared to AD and controls (all p<0.01). Lower frontal R1 was associated with impaired performance on digit span forward (standardized beta, stβ=0.72) and category fluency (stβ=0.69) tests. Lower parietal R1 was related to lower delayed (stβ=0.50) and immediate (stβ=0.48) recall, VOSP number location (stβ=0.70) and fragmented letters (stβ=0.59) scores. Lower occipital R1 was associated to worse performance on VOSP fragmented letters (stβ=0.61), all p<0.05. / Conclusion: The amount of tau binding in DLB was minimal and did not differ from controls. However, there were DLB-specific occipital and lateral parietal relative cerebral blood flow reductions compared to both controls and AD patients. Regional rCBF, but not tau binding, was related to cognitive impairment. This indicates that assessment of rCBF may give more insight into disease mechanisms in DLB than tau PET

    In vivo tau pathology is associated with synaptic loss and altered synaptic function

    Get PDF
    BACKGROUND: The mechanism of synaptic loss in Alzheimer’s disease is poorly understood and may be associated with tau pathology. In this combined positron emission tomography (PET) and magnetoencephalography (MEG) study, we aimed to investigate spatial associations between regional tau pathology ([{18}^F]flortaucipir PET), synaptic density (synaptic vesicle 2A [11C]UCB-J PET) and synaptic function (MEG) in Alzheimer’s disease. METHODS: Seven amyloid-positive Alzheimer’s disease subjects from the Amsterdam Dementia Cohort underwent dynamic 130-minV [{18}^F]flortaucipir PET, dynamic 60-min [{11}^C]UCB-J PET with arterial sampling and 2 × 5-min resting-state MEG measurement. [{18^}F]flortaucipir- and [{11}^C]UCB-J-specific binding (binding potential, BPND) and MEG spectral measures (relative delta, theta and alpha power; broadband power; and peak frequency) were assessed in cortical brain regions of interest. Associations between regional [{18}^F]flortaucipir BPND, [{11}^C]UCB-J BP_{ND} and MEG spectral measures were assessed using Spearman correlations and generalized estimating equation models. RESULTS: Across subjects, higher regional [{18}^F]flortaucipir uptake was associated with lower [{11}^C]UCB-J uptake. Within subjects, the association between [{11}^C]UCB-J and [{18}^F]flortaucipir depended on within-subject neocortical tau load; negative associations were observed when neocortical tau load was high, gradually changing into opposite patterns with decreasing neocortical tau burden. Both higher [{18}^F]flortaucipir and lower [{11}^C]UCB-J uptake were associated with altered synaptic function, indicative of slowing of oscillatory activity, most pronounced in the occipital lobe. CONCLUSIONS: These results indicate that in Alzheimer’s disease, tau pathology is closely associated with reduced synaptic density and synaptic dysfunction

    ATN classification and clinical progression in subjective cognitive decline

    Get PDF
    Objective: To investigate the relationship between the ATN classification system (amyloid, tau, neurodegeneration) and risk of dementia and cognitive decline in individuals with subjective cognitive decline (SCD). / Methods: We classified 693 participants with SCD (60 ± 9 years, 41% women, Mini-Mental State Examination score 28 ± 2) from the Amsterdam Dementia Cohort and Subjective Cognitive Impairment Cohort (SCIENCe) project according to the ATN model, as determined by amyloid PET or CSF β-amyloid (A), CSF p-tau (T), and MRI-based medial temporal lobe atrophy (N). All underwent extensive neuropsychological assessment. For 342 participants, follow-up was available (3 ± 2 years). As a control population, we included 124 participants without SCD. / Results: Fifty-six (n = 385) participants had normal Alzheimer disease (AD) biomarkers (A–T–N–), 27% (n = 186) had non-AD pathologic change (A–T–N+, A–T+N–, A–T+N+), 18% (n = 122) fell within the Alzheimer continuum (A+T–N–, A+T–N+, A+T+N–, A+T+N+). ATN profiles were unevenly distributed, with A–T+N+, A+T–N+, and A+T+N+ containing very few participants. Cox regression showed that compared to A–T–N–, participants in A+ profiles had a higher risk of dementia with a dose–response pattern for number of biomarkers affected. Linear mixed models showed participants in A+ profiles showed a steeper decline on tests addressing memory, attention, language, and executive functions. In the control group, there was no association between ATN and cognition. / Conclusions: Among individuals presenting with SCD at a memory clinic, those with a biomarker profile A–T+N+, A+T–N–, A+T+N–, and A+T+N+ were at increased risk of dementia, and showed steeper cognitive decline compared to A–T–N– individuals. These results suggest a future where biomarker results could be used for individualized risk profiling in cognitively normal individuals presenting at a memory clinic

    Subjective Cognitive Impairment Cohort (SCIENCe): study design and first results

    Get PDF
    BACKGROUND: We aimed to describe the Subjective Cognitive Impairment Cohort (SCIENCe) study design, to crosssectionally describe participant characteristics, and to evaluate the SCD-plus criteria. METHODS: The SCIENCe is a prospective cohort study of subjective cognitive decline (SCD) patients. Participants undergo extensive assessment, including cerebrospinal fluid collection and optional amyloid positron emission tomography scan, with annual follow-up. The primary outcome measure is clinical progression. RESULTS: Cross-sectional evaluation of the first 151 participants (age 64 ± 8, 44% female, Mini-Mental State Examination 29 ± 2) showed that 28 (25%) had preclinical Alzheimer’s disease (AD) (amyloid status available n = 114 (75%)), 58 (38%) had subthreshold psychiatry, and 65 (43%) had neither. More severe subjective complaints were associated with worse objective performance. The SCD-plus criteria age ≥ 60 (OR 7.7 (95% CI 1.7–38.9)) and apolipoprotein E (genotype) e4 (OR 4.8 (95% CI 1.6–15.0)) were associated with preclinical AD. CONCLUSIONS: The SCIENCe study confirms that SCD is a heterogeneous group, with preclinical AD and subthreshold psychiatric features. We found a number of SCD-plus criteria to be associated with preclinical AD. Further inclusion and follow-up will address important questions related to SCD

    [18F]Flortaucipir PET Across Various MAPT Mutations in Presymptomatic and Symptomatic Carriers

    Get PDF
    OBJECTIVE: To assess the [18F]flortaucipir binding distribution across MAPT mutations in presymptomatic and symptomatic carriers. METHODS: We compared regional [18F]flortaucipir binding potential(BPND) derived from a 130-minute dynamic [18F]flortaucipir PET scan, in nine (pre)symptomatic MAPT mutation carriers(4 with P301L[1 symptomatic], 2 with R406W[1 symptomatic]; 1 presymptomatic L315R, 1 presymptomatic S320F and 1 symptomatic G272V carrier) with 30 cognitively normal controls and 52 Alzheimer's disease patients. RESULTS: [18F]flortaucipir BPND images showed overall highest binding in the symptomatic carriers. This was most pronounced in the symptomatic R406W carrier in whom tau binding exceeded the normal control range in the anterior cingulate cortex, insula, amygdala, temporal, parietal and frontal lobe. Elevated medial temporal lobe BPND was observed in a presymptomatic R406W carrier. The single symptomatic and one of the three presymptomatic P301L carriers showed elevated [18F]flortaucipir BPND in the insula, parietal and frontal lobe compared to controls. The symptomatic G272V carrier exhibited a widespread elevated cortical BPND, with at neuropathological examination a combination of 3R pathology and encephalitis. The L315R presymptomatic mutation carrier showed higher frontal BPND compared to controls. The BPND values of the S320F presymptomatic mutation carrier fell within the range of controls. CONCLUSION: Presymptomatic MAPT mutation carriers already showed subtle elevated tau binding, whereas symptomatic MAPT mutation carriers showed a more marked increase in [18F]flortaucipir BPND. Tau deposition was most pronounced in R406W MAPT (pre)symptomatic mutation carriers, which is associated with both 3R and 4R tau accumulation. Thus, [18F]flortaucipir may serve as an early biomarker for MAPT mutation carriers in mutations that cause 3R/4R tauopathies

    Neurobiological basis and risk factors of persistent fatigue and concentration problems after COVID-19: study protocol for a prospective case–control study (VeCosCO)

    Get PDF
    Introduction: The risk factors for persistent fatigue and cognitive complaints after infection with SARS-CoV-2 and the underlying pathophysiology are largely unknown. Both clinical factors and cognitive-behavioural factors have been suggested to play a role in the perpetuation of complaints. A neurobiological aetiology, such as neuroinflammation, could be the underlying pathophysiological mechanism for persisting complaints. To unravel factors associated with persisting complaints, VeCosCO will compare individuals with and without persistent fatigue and cognitive complaints >3 months after infection with SARS-CoV-2. The study consists of two work packages. The first work package aims to (1) investigate the relation between persisting complaints and neuropsychological functioning; (2) determine risk factors and at-risk phenotypes for the development of persistent fatigue and cognitive complaints, including the presence of postexertional malaise and (3) describe consequences of persistent complaints on quality of life, healthcare consumption and physical functioning. The second work package aims to (1) determine the presence of neuroinflammation with [18F]DPA-714 whole-body positron emission tomography (PET) scans in patients with persisting complaints and (2) explore the relationship between (neuro)inflammation and brain structure and functioning measured with MRI. / Methods and analysis: This is a prospective case–control study in participants with and without persistent fatigue and cognitive complaints, >3 months after laboratory-confirmed SARS-CoV-2 infection. Participants will be mainly included from existing COVID-19 cohorts in the Netherlands covering the full spectrum of COVID-19 acute disease severity. Primary outcomes are neuropsychological functioning, postexertional malaise, neuroinflammation measured using [18F]DPA-714 PET, and brain functioning and structure using (f)MRI. / Ethics and dissemination: Work package 1 (NL79575.018.21) and 2 (NL77033.029.21) were approved by the medical ethical review board of the Amsterdam University Medical Centers (The Netherlands). Informed consent is required prior to participation in the study. Results of this study will be submitted for publication in peer-reviewed journals and shared with the key population

    Personalized risk for clinical progression in cognitively normal subjects—the ABIDE project

    Get PDF
    Background: Biomarkers such as cerebrospinal fluid (CSF) and magnetic resonance imaging (MRI) have predictive value for progression to dementia in patients with mild cognitive impairment (MCI). The pre-dementia stage takes far longer, and the interpretation of biomarker findings is particular relevant for individuals who present at a memory clinic, but are deemed cognitively normal. The objective of the current study is to construct biomarker-based prognostic models for personalized risk of clinical progression in cognitively normal individuals presenting at a memory clinic. / Methods: We included 481 individuals with subjective cognitive decline (SCD) from the Amsterdam Dementia Cohort. Prognostic models were developed by Cox regression with patient characteristics, MRI, and/or CSF biomarkers to predict clinical progression to MCI or dementia. We estimated 5- and 3-year individualized risks based on patient-specific values. External validation was performed on Alzheimer’s Disease Neuroimaging Initiative (ADNI) and an European dataset. / Results: Based on demographics only (Harrell’s C = 0.70), 5- and 3-year progression risks varied from 6% [3–11] and 4% [2–8] (age 55, MMSE 30) to 38% [29–49] and 28% [21–37] (age 70, MMSE 27). Normal CSF biomarkers strongly decreased progression probabilities (Harrell’s C = 0.82). By contrast, abnormal CSF markedly increased risk (5 years, 96% [56–100]; 3 years, 89% [44–99]). The CSF model could reclassify 58% of the individuals with an “intermediate” risk (35–65%) based on the demographic model. MRI measures were not retained in the models. / Conclusion: The current study takes the first steps in a personalized approach for cognitively normal individuals by providing biomarker-based prognostic models
    corecore